Step 1) Solve the first equation for #y#:
#3x - color(red)(3x) + y = 5 - color(red)(3x)#
#0 + y = 5 - 3x#
#y = 5 - 3x#
Step 2) Substitute #color(red)(5 - 3x)# for #y# in the second equation and solve for #x#:
#x - 2(color(red)(5 - 3x))= 11#
#x - (2 xx color(red)(5)) + (2 xx color(red)(3x))= 11#
#x - 10 + 6x = 11#
#7x - 10 = 11#
#7x - 10 + color(red)(10) = 11 + color(red)(10)#
#7x - 0 = 21#
#7x = 21#
#(7x)/color(red)(7) = 21/color(red)(7)#
#(color(red)(cancel(color(black)(7)))x)/cancel(color(red)(7)) = 3#
#x = 3#
Step 3) Substitute #color(red)(3)# for #x# in the solution to the first equation at the end of Step 1
#y = 5 - (3 xx color(red)(3))#
#y = 5 - 9#
#y = -4#
The solution is #x = 3# and #y = -4#