What is the integral of #sqrt(x^2 + 1)#?
3 Answers
Please, see the answer below:
Explanation:
Use
Nowm the given integral becomes
In log form,
I got:
#1/2xsqrt(x^2 + 1) + 1/2ln|sqrt(x^2 + 1) + x| + C#
Here's another way to do it, without using reduction formulas or hyperbolic functions.
Let:
#x = tantheta#
#dx = sec^2thetad theta#
#=> int sqrt(tan^2theta + 1)sec^2thetad theta#
#= int sec^3theta d theta#
#= int sectheta(sec^2theta)d theta#
This can be solved using integration by parts. Let:
#u = sectheta#
#dv = sec^2thetad theta#
#v = tantheta#
#du = secthetatanthetad theta#
#=> uv - intvdu#
#= secthetatantheta - int secthetatan^2thetad theta#
#= secthetatantheta - int sec^3theta - secthetad theta#
#= secthetatantheta - int sec^3thetad theta + intsecthetad theta#
We see the integral reappears. Thus:
#=> 2int sec^3thetad theta = secthetatantheta + intsecthetad theta#
#=> int sec^3thetad theta = 1/2secthetatantheta + 1/2ln|sectheta + tantheta|#
Finally, un-substitute. Since
#=> int sqrt(x^2 + 1)dx = color(blue)(1/2xsqrt(x^2 + 1) + 1/2ln|sqrt(x^2 + 1) + x| + C)#