What is the integral of #sqrt(x^2 + 1)#?

3 Answers

Please, see the answer below:
enter image source here

#=1/2(sinh^(-1)x+xsqrt(1+x^2))+C#

Explanation:

Use #x = sinh u#, giving #dx = cosh u du#,

#cosh^2u+sinh^2u=cosh 2u and sinh 2u = 2 sinh u cosh u#.

Nowm the given integral becomes

#int cosh^2u du#

#=1/2 int (1+ cosh 2u ) du#

#=1/2[u+1/2sinh 2u]+C#

#=1/2(u+sinh u cosh u)+C#

#=1/2(sinh^(-1)x+xsqrt(1+x^2))+C#.

In log form,

#sinh^(-1)x=ln(x+sqrt(x^2+1))#

Jan 19, 2017

I got:

#1/2xsqrt(x^2 + 1) + 1/2ln|sqrt(x^2 + 1) + x| + C#


Here's another way to do it, without using reduction formulas or hyperbolic functions.

Let:

#x = tantheta#
#dx = sec^2thetad theta#

#=> int sqrt(tan^2theta + 1)sec^2thetad theta#

#= int sec^3theta d theta#

#= int sectheta(sec^2theta)d theta#

This can be solved using integration by parts. Let:

#u = sectheta#
#dv = sec^2thetad theta#
#v = tantheta#
#du = secthetatanthetad theta#

#=> uv - intvdu#

#= secthetatantheta - int secthetatan^2thetad theta#

#= secthetatantheta - int sec^3theta - secthetad theta#

#= secthetatantheta - int sec^3thetad theta + intsecthetad theta#

We see the integral reappears. Thus:

#=> 2int sec^3thetad theta = secthetatantheta + intsecthetad theta#

#=> int sec^3thetad theta = 1/2secthetatantheta + 1/2ln|sectheta + tantheta|#

Finally, un-substitute. Since #x = tantheta#, #sqrt(x^2 + 1) = sqrt(tan^2theta + 1) = sqrt(sec^2theta) = sectheta#, and we have:

#=> int sqrt(x^2 + 1)dx = color(blue)(1/2xsqrt(x^2 + 1) + 1/2ln|sqrt(x^2 + 1) + x| + C)#