How do you calculate [#NO_3^(-)#] if 120 mL of 0.40 M #KNO_3# is mixed with 400 mL of 1.2 M #Pb(NO_3)_2#?
1 Answer
I got
First, it helps to write out each process:
#"KNO"_3(aq) -> "K"^(+)(aq) + "NO"_3^(-)(aq)#
#"Pb"("NO"_3)_2(aq) -> "Pb"^(2+)(aq) + 2"NO"_3^(-)(aq)#
Therefore, for each mol of
If you recall, the
#("0.40 M KNO"_3 xx "0.120 L")(("1 mols NO"_3^(-))/("1 mol KNO"_3)) = "0.048 mols NO"_3^(-)# from#"KNO"_3#
#("1.20 M Pb"("NO"_3)_2 xx "0.400 L")(("2 mols NO"_3^(-))/("1 mol Pb"("NO"_3)_2))#
#= "0.960 mols NO"_3^(-)# from#"Pb"("NO"_3)_2#
The total
#"0.048 mols" + "0.960 mols" = "1.008 mols NO"_3^(-)#
and the concentration is:
#color(blue)(["NO"_3^(-)]) = ("1.008 mols NO"_3^(-))/("0.120 + 0.400 L")#
#=# #color(blue)("1.94 M")#
Another way to do this is to recognize that since molarity is written as
So, you could just calculate the new molarities of
#("0.120 L")("0.400 M") = (M_2)("0.120 + 0.400 L") #
#=> M_(2a) = "0.092 M NO"_3^(-)# from#"KNO"_3#
#(("2 mols NO"_3^(-))/("1 mol Pb"("NO"_3)_2))("0.400 L")("1.20 M") = (M_2)("0.120 + 0.400 L") #
#=> M_(2b) = "1.85 M NO"_3^(-)# from#"Pb"("NO"_3)_2#
Therefore:
#M_2 = color(blue)(["NO"_3^(-)])#
#= (n_("NO"_3^(-),a))/(V_"tot") + (n_("NO"_3^(-),b))/(V_"tot")#
#= M_(2a) + M_(2b)#
#= 0.092 + 1.85# #"M"#
#=# #color(blue)("1.94 M")#