How do you rotate the axes to transform the equation #x^2-4xy+y^2=1# into a new equation with no xy term and then find the angle of rotation?

2 Answers
Jan 24, 2017
  • #-X^2 + 3Y^2 = 1#

  • rotation is #pi/4#

Explanation:

We can write the original conic section in matrix form as:

#(x,y) ((1, -2),(-2 ,1)) ((x),(y)) = 1#

Or:

# (x,y) A ((x),(y)) = 1 qquad triangle#

If we could write this is the following form with a diagonal matrix #Lambda# using new rotated axes X and Y we would have no #XY# term, ie:

#(X,Y) color(blue)(((a_(11), 0),(0 ,a_(22))) ((X),(Y))) = (X,Y) color(blue)(Lambda) ((X),(Y)) = 1#

That is what we are going to do.

Firstly, for a clockwise rotation #theta # from orthogonal axes (x,y) to new orthogonal axes (X,Y), we know that:

#((x),(y)) = ((cos theta, -sin theta),(sin theta ,cos theta)) ((X),(Y)) = R((X),(Y)) qquad square#

Now, because R is orthogonal, #R^T = R^(-1)#; and because the transpose of the product of some matrices is the product of their transposes in reverse order, so we say wrt #square# that:

#(x, y) = (X,Y) R^(-1) qquad circ#

We can now re-write #triangle# using #square# and #circ# as:

# (X,Y) color(red)(R^(-1) A R)((X),(Y)) = 1#

If #R# is the matrix that diagonalises #A#, ie if #Lambda = R^(-1) A R#, then we have achieved what we set out to do :) because:

# (X,Y) color(red)(R^(-1) A R)((X),(Y)) = 1 implies (X,Y) color(red)(Lambda)((X),(Y)) = 1#

As it happens, matrix #A# is diagonalisable:

  • #lambda_1 = -1, mathbf alpha_1 = ((1),(1))#

  • #lambda_2 = 3, mathbf alpha_2 = ((-1),(1))#

The diagonal matrix is #Lambda = ((-1, 0),(0, 3))#, and the matrix of eigenvectors is #R = ((1, -1),(1, 1))# with #R^(-1) = 1/2((1, 1),(-1, 1))#

So:

#(X, Y) ((-1, 0),(0, 3)) ((X),(Y)) = 1#

or:

#-X^2 + 3Y^2 = 1#, which is a hyperbola based symmetrically about the Origin.

In terms of the rotation, we need to ensure that our #R# is orthogonal:

#Lambda = R^(-1) A R = 1/2((1, 1),(-1, 1)) ((1, -2),(-2 ,1)) ((1, -1),(1, 1)) #

#= ((1/sqrt2, 1/sqrt2),(-1/sqrt2, 1/sqrt2)) A ((1/sqrt2, -1/sqrt2),(1/sqrt2, 1/sqrt2)) #

#= ((cos (pi/4), sin (pi/4)),(-sin (pi/4), cos (pi/4))) A ((cos (pi/4), -sin (pi/4)),(sin (pi/4), cos (pi/4))) #

#implies R = ((cos (pi/4), -sin (pi/4)),(sin (pi/4), cos (pi/4))) #

So the rotation is #pi/4#

Jan 24, 2017

The angle of rotation #=pi/4#

Explanation:

The equations of transformations are

#x=Xcostheta-Ysintheta#

#y=Xsintheta+Ycostheta#

Therefore,

#x^2+y^2-4xy=1#

#(Xcostheta-Ysintheta)^2+(Xsintheta+Ycostheta)^2-4(Xcostheta-Ysintheta)(Xsintheta+Ycostheta)=1#

#X^2cos^2theta+Y^2sin^2theta-cancel(2XYsinthetacostheta)+X^2sin^2theta+Y^2cos^2theta+cancel(2XYsinthetacostheta)-4(X^2sinthetacostheta+Y^2sinthetacostheta+XYcos^2theta-XYsin^2theta)=1#

#X^2+Y^2-4(X^2+Y^2)sinthetacostheta-4XY(cos^2theta-sin^2theta)=1#

We eliminate the #XY# term

#cos^2theta-sin^2theta=0#

#costheta=sintheta#

so,

#theta=pi/4#

Therefore,

#x=X/sqrt2-Y/sqrt2#

#y=X/sqrt2+Y/sqrt2#

So,

#(X/sqrt2-Y/sqrt2)^2+(X/sqrt2+Y/sqrt2)^2-4(X/sqrt2-Y/sqrt2)(X/sqrt2+Y/sqrt2)=1#

#X^2+Y^2-4(X^2/2-Y^2/2)=1#

#X^2+Y^2-2X^2+2Y^2=1#

#3Y^2-X^2=1#

graph{(x^2+y^2-4xy-1)(3y^2-x^2-1)=0 [-10, 10, -5, 5]}