#y=x^3+tanx rArr dy/dx=d/dx{x^3+tanx}#
#=d/dx(x^3)+d/dx(tanx)=3x^(3-1)+sec^2x#
#:. dy/dx=3x^2+(secx)^2#
#:. (d^2y)/dx^2=d/dx(dy/dx)=d/dx(3x^2)+d/dx(secx)^2, i.e., #
# (d^2y)/dx^2=3(2x)+d/dx(t^2), say, where, t=secx...(ast)#
Here, using the Chain Rule,
#d/dx(t^2)={d/dt(t^2)}{d/dx(t)}=(2t){d/dx(secx)}, so, #
#=(2t)(secxtanx), &, because, t=secx,#
#d/dx(t^2)=2sec^2xtanx#
#:., by (ast), (d^2y)/dx^2=6x+2sec^2xtanx.#
Enjoy Maths.!