What is the value of #sin((17pi)/12)#?

1 Answer
Jan 31, 2017

#sqrt(2 + sqrt3)/2#

Explanation:

Use trig table, unit circle -->
#sin ((17pi)/12) = sin ((5pi)/12 + pi) = - sin ((5pi)/12)#
Find #sin ((5pi)/12)# by using trig identity:
#2sin^2 a = 1 - cos 2a#
#2sin^2 (5pi)/12) = 1 - cos ((5pi)/6) = 1 + sqrt3/2 = (2 + sqrt3)/2#
#sin^2 ((5pi)/12) = (2 + sqrt3)/4#
#sin ((5pi)/12) = +- sqrt(2 + sqrt3)/2#
Take the positive value because #sin ((5pi)/12)# is positive.
Finally:
#sin ((17pi)/12) = - sin ((5pi)/12) = - sqrt(2 + sqrt3)/2#