What is #x# in the equation #-3.1(2x + 5) = -5.7 - 1.3x#?
1 Answer
Feb 3, 2017
Explanation:
distribute the bracket on the left side of the equation.
#rArr-6.2x-15.5=-5.7-1.3x# collect terms in x on the left side and numeric values on the right side.
add 1.3x to both sides.
#-6.2x+1.3x-15.5=-5.7cancel(-1.3x)cancel(+1.3x)#
#rArr-4.9x-15.5=-5.7# add 15.5 to both sides.
#-4.9xcancel(-15.5)cancel(+15.5)=-5.7+15.5#
#rArr-4.9x=9.8# To solve for x, divide both sides by - 4.9
#(cancel(-4.9) x)/cancel(-4.9)=9.8/(-4.9)#
#rArrx=-2#
#color(blue)"As a check"# Substitute this value into the equation and if the left side equals the right side then it is the solution.
#"left side "=-3.1(-4+5)=-3.1#
#"right side "=-5.7-(-2.6)=-5.7+2.6=-3.1#
#rArrx=-2" is the solution"#