How do you find the equation of the line tangent to the graph of y=sin x at the point where x=pi/3?
1 Answer
Feb 4, 2017
Explanation:
The equation of the tangent in
#color(blue)"point-slope form"# is.
#color(red)(bar(ul(|color(white)(2/2)color(black)(y-y_1=m(x-x_1))color(white)(2/2)|)))#
where m represents the slope and# (x_1,y_1)" a point on the line"#
#color(orange)"Reminder " m=dy/dx" at x = a"#
#y=sinxrArrdy/dx=cosx#
#"At "x=pi/3: dy/dx=cos(pi/3)=1/2#
#"and " y=sin(pi/3)=sqrt3/2#
#rArrm=1/2" and " (x_1,y_1)=(pi/3,sqrt3/2)#
#rArry-sqrt3/2=1/2(x-pi/3)#
#rArry=1/2x+1/6(3sqrt3-pi)#