A customer ordered fifteen Zingers. Zingers are placed in packages of four, three, or one. In how many different ways can this order be filled?
2 Answers
Explanation:
There are at most
It's probably best to just systematically enumerate them as follows:
#o o o ocolor(white)(o)o o o ocolor(white)(o)o o o ocolor(white)(o)o o o#
#o o o ocolor(white)(o)o o o ocolor(white)(o)o o o ocolor(white)(o)ocolor(white)(o)ocolor(white)(o)o#
#o o o ocolor(white)(o)o o o ocolor(white)(o)o o ocolor(white)(o)o o ocolor(white)(o)o#
#o o o ocolor(white)(o)o o o ocolor(white)(o)o o ocolor(white)(o)ocolor(white)(o)ocolor(white)(o)ocolor(white)(o)o#
#o o o ocolor(white)(o)o o o ocolor(white)(o)ocolor(white)(o)ocolor(white)(o)ocolor(white)(o)ocolor(white)(o)ocolor(white)(o)ocolor(white)(o)o#
#o o o ocolor(white)(o)o o ocolor(white)(o)o o ocolor(white)(o)o o ocolor(white)(o)ocolor(white)(o)o#
#o o o ocolor(white)(o)o o ocolor(white)(o)o o ocolor(white)(o)ocolor(white)(o)ocolor(white)(o)ocolor(white)(o)ocolor(white)(o)o#
#o o o ocolor(white)(o)o o ocolor(white)(o)ocolor(white)(o)ocolor(white)(o)ocolor(white)(o)ocolor(white)(o)ocolor(white)(o)ocolor(white)(o)ocolor(white)(o)o#
#o o o ocolor(white)(o)ocolor(white)(o)ocolor(white)(o)ocolor(white)(o)ocolor(white)(o)ocolor(white)(o)ocolor(white)(o)ocolor(white)(o)ocolor(white)(o)ocolor(white)(o)ocolor(white)(o)o#
#o o ocolor(white)(o)o o ocolor(white)(o)o o ocolor(white)(o)o o ocolor(white)(o)o o o#
#o o ocolor(white)(o)o o ocolor(white)(o)o o ocolor(white)(o)o o ocolor(white)(o)ocolor(white)(o)ocolor(white)(o)o#
#o o ocolor(white)(o)o o ocolor(white)(o)o o ocolor(white)(o)ocolor(white)(o)ocolor(white)(o)ocolor(white)(o)ocolor(white)(o)ocolor(white)(o)o#
#o o ocolor(white)(o)o o ocolor(white)(o)ocolor(white)(o)ocolor(white)(o)ocolor(white)(o)ocolor(white)(o)ocolor(white)(o)ocolor(white)(o)ocolor(white)(o)ocolor(white)(o)o#
#o o ocolor(white)(o)ocolor(white)(o)ocolor(white)(o)ocolor(white)(o)ocolor(white)(o)ocolor(white)(o)ocolor(white)(o)ocolor(white)(o)ocolor(white)(o)ocolor(white)(o)ocolor(white)(o)ocolor(white)(o)o#
#ocolor(white)(o)ocolor(white)(o)ocolor(white)(o)ocolor(white)(o)ocolor(white)(o)ocolor(white)(o)ocolor(white)(o)ocolor(white)(o)ocolor(white)(o)ocolor(white)(o)ocolor(white)(o)ocolor(white)(o)ocolor(white)(o)ocolor(white)(o)o#
I count
See below.
Explanation:
Calling
The different solutions to this equation, calling diophantine equation after Diophantus of Alexandria, equals the number of different arrangements.