What is #(4a^2 + 34a - 65) -: (a + 1.0)#?
1 Answer
Feb 13, 2017
Explanation:
One way of doing this is to express the numerator as factors of the divisor (a + 1).
Some
#color(blue)"algebraic manipulation"# is required.
#(color(red)(4a)(a+1)+(color(magenta)(-4a)+34a)-65)/(a+1)#
#=(color(red)(4a)(a+1)+color(red)(30)(a+1)+(color(magenta)(-30)-65))/(a+1)#
#=(color(red)(4a)cancel((a+1)))/cancel((a+1))+(color(red)(30)cancel((a+1)))/cancel((a+1))-95/(a+1)#
#rArr(4a^2+34a-65)/(a+1)=4a+30-95/(a+1)#