How do you evaluate the definite integral #int sinxdx# from #[0, pi/2]#? Calculus Introduction to Integration Definite and indefinite integrals 1 Answer sjc Feb 14, 2017 #1# Explanation: #int_0^(pi/2)sinxdx# now #d/(dx)(cosx)=-sinx# so #intsinxdx=-cosxdx# #:.int_0^(pi/2)sinxdx=[-cos]_0^(pi/2)# #=-[cos]_0^(pi/2)=-{cancel((cos(pi/2)))^(=0)-cos0)}# #=- - 1=1# Answer link Related questions What is the difference between definite and indefinite integrals? What is the integral of #ln(7x)#? Is f(x)=x^3 the only possible antiderivative of f(x)=3x^2? If not, why not? How do you find the integral of #x^2-6x+5# from the interval [0,3]? What is a double integral? What is an iterated integral? How do you evaluate the integral #1/(sqrt(49-x^2))# from 0 to #7sqrt(3/2)#? How do you integrate #f(x)=intsin(e^t)dt# between 4 to #x^2#? How do you determine the indefinite integrals? How do you integrate #x^2sqrt(x^(4)+5)#? See all questions in Definite and indefinite integrals Impact of this question 5680 views around the world You can reuse this answer Creative Commons License