Question #59e27

2 Answers
Feb 13, 2017

Recursively use L'Hôpital's rule

Explanation:

Because the expression evaluated at #oo# results in the indeterminate form #-oo/oo#, one should recursively use L'Hôpital's rule :

Compute the derivative of the numerator:

#(d(5x^3+2x+3))/dx=15x^2+2#

Compute the derivative of the denominator:

#(d(4-x^2-2x^3))/dx=-2x-6x^2#

Check the limit of the new expression:

#lim_(xtooo)(15x^2+2)/(-2x-6x^2)#

Evaluation at #oo# is still #-oo/oo#. Apply the rule a second time:

Compute the derivative of the numerator:

#(d(15x^2+2))/dx=30x#

Compute the derivative of the denominator:

#(d(-2x-6x^2))/dx=-2-12x#

Check the limit of the new expression:

#lim_(xtooo)(30x)/(-2-12x)#

Still #-oo/oo#

One more time:

Compute the derivative of the numerator:

#(d(30x))/dx=30#

Compute the derivative of the denominator:

#(d(-2-12x))/dx=-12#

Check the limit of the new expression:

#lim_(xtooo)(30)/(-12) = -5/2#

Therefore, the limit of the original expression goes to the same value:

#lim_(xtooo)(5x^3+2x-3)/(4-x^2-2x^3) = -5/2#

Feb 14, 2017

#-5/2#

Explanation:

Factor out of the numerator and denominator the greatest power of #x# in the denominator, and then reduce. (Or, divide numerator and denominator by the greatest power of #x# in the denominator.)

Use #lim_(xrarroo)c/x^n = 0# for all #c# and all positive #n#.

#lim_(xrarroo) (5x^3+2x-1)/(4-x^2-2x^3) = lim_(xrarroo) (x^3(5+2/x^2-1/x^3))/(x^3(4/x^3-1/x-2))#

# = lim_(xrarroo) (5+2/x^2-1/x^3)/(4/x^3-1/x-2)#

# = (5+0-0)/(0-0-2) = -5/2#

Note

The above is the long explanation. The short one is look at just the dominating terms -- the greatest powers of #x#-- in the numerator and denominator. At infinity, the quotient behaves like the ratio of those greatest powers.

Examples

#lim_(xrarroo)(3x^5+7x^2-19)/(4x^5-2x^3+3x-2) = lim_(xrarroo)(3x^5)/(4x^5) = lim_(xrarroo)3/4 = 3/4#

#lim_(xrarroo)(7x^2-5x+7)/(2x^3+5x+8) = lim_(xrarroo)(7x^2)/(2x^3) = lim_(xrarroo)7/(2x) = 0#

#lim_(xrarroo)(x^4+3x-9)/(6x+2) = lim_(xrarroo)(x^4)/(6x) = lim_(xrarroo)x^3/6 = oo#