How do you find the limit of #(1-cosx)/(2x^2 - x)# as x approaches 0?
2 Answers
Explanation:
We can use the Maclaurin series for
#cos x = 1/(0!)-x^2/(2!)+x^4/(4!)-x^6/(6!)+...#
So:
#1 - cos x = 1/2x^2-O(x^4)#
and:
#lim_(x->0) (1-cosx)/(2x^2-x) = lim_(x->0) (1/2x^2-O(x^4))/((2x-1)x)#
#color(white)(lim_(x->0) (1-cosx)/(2x^2-x)) = lim_(x->0) (1/2x-O(x^3))/(2x-1)#
#color(white)(lim_(x->0) (1-cosx)/(2x^2-x)) = 0/(-1)#
#color(white)(lim_(x->0) (1-cosx)/(2x^2-x)) = 0#
If you've learned them, use the fundamental trigonometric limits.
Explanation:
#= lim_(xrarr0)(1-cosx)/x * lim_(xrarr0) 1/(2x-1)#
# = 0 * 1/-1 = 0#