What is the domain of #sqrt((x+7)/(3-x))#?

1 Answer
Feb 16, 2017

The domain is #x in [-7,3[#

Explanation:

Let #f(x)=(x+7)/(3-x)#

To determine the domain,

What`s under the #sqrt# sign is #>=0# with #x!=3#

So,

#f(x)>=0#

We build a sign chart

#color(white)(aaaa)##x##color(white)(aaaa)##-oo##color(white)(aaaa)##-7##color(white)(aaaaaa)##3##color(white)(aaaaaaa)##+oo#

#color(white)(aaaa)##x+7##color(white)(aaaaa)##-##color(white)(aaaaa)##+##color(white)(aa)##||##color(white)(aaaa)##+#

#color(white)(aaaa)##3-x##color(white)(aaaaa)##+##color(white)(aaaaa)##+##color(white)(aa)##||##color(white)(aaaa)##-#

#color(white)(aaaa)##f(x)##color(white)(aaaaaa)##-##color(white)(aaaaa)##+##color(white)(aa)##||##color(white)(aaaa)##-#

Therefore,

#f(x)>=0# when #x in [-7,3[#