How do you find the indefinite integral of #int (x^4+x-4)/(x^2+2)#?

1 Answer
Feb 19, 2017

The answer is #=x^3/3-2x+1/2ln(x^2+2)+C#

Explanation:

Let's perform a long division

#color(white)(aaaa)##x^4##color(white)(aaaaaa)##x-4##color(white)(aaaa)##|##x^2+2#

#color(white)(aaaa)##x^4+2x^2##color(white)(aaaa)####color(white)(aaaaa)##|##x^2-2#

#color(white)(aaaaa)##0+2x^2+x##color(white)(aa)##-4#

#color(white)(aaaaaaaa)##+0+x##color(white)(aaaa)##0#

Therefore,

#(x^4+x-4)/(x^2+2)=x^2-2+x/(x^2+2)#

So,

#int((x^4+x-4)dx)/(x^2+2)=intx^2dx-int2dx+int(xdx)/(x^2+2)#

#=x^3/3-2x+int(xdx)/(x^2+2)#

For the last integral,

Let #u=x^2+2#, #=>#, #du=2xdx#

#int(xdx)/(x^2+2)=1/2int(du)/u#

#=1/2lnu#

#=1/2ln(x^2+2)#

Putting it all together

#int((x^4+x-4)dx)/(x^2+2)=x^3/3-2x+1/2ln(x^2+2)+C#