How do you solve #w^ { 2} = - 2w - 12#?
2 Answers
Feb 20, 2017
Explanation:
Feb 20, 2017
Explanation:
Rearrange the quadratic and equate to zero.
#rArrw^2+2w+12=0# This does not factorise, so check the
#color(blue)"discriminant"# For this quadratic
#a=1,b=2" and " c=12#
#rArrb^2-4ac=2^2-(4xx1xx12)=-44#
#b^2-4ac<0rArr" no real roots"# The roots are complex. We can find them using the
#color(blue)"quadratic formula"#
#w=(-b+-sqrt(b^2-4ac))/(2a)#
#rArrw=(-2+-sqrt(-44))/2#
#color(white)(xxxx)=(-2+-2isqrt11)/2#
#rArrw=-1+-isqrt11#