We cannot do crossing over.
#(-x+8)/(x-2)>=5#
#(8-x)/(x-2)-5>=0#
#((8-x)-5(x-2))/(x-2)>=0#
#((8-x-5x+10))/(x-2)>=0#
#((18-6x))/(x-2)>=0#
#(6(3-x))/(x-2)>=0#
Let #f(x)=(6(3-x))/(x-2)#
The domain of #f(x)# is #D_f(x)=RR-{2}#
We can build the sign chart
#color(white)(aaaa)##x##color(white)(aaaa)##-oo##color(white)(aaaaaa)##2##color(white)(aaaaaaaa)##3##color(white)(aaaa)##+oo#
#color(white)(aaaa)##x-2##color(white)(aaaa)##-##color(white)(aaaa)##||##color(white)(aaa)##+##color(white)(aaaa)##+#
#color(white)(aaaa)##3-x##color(white)(aaaa)##+##color(white)(aaaa)##||##color(white)(aaa)##+##color(white)(aaaa)##-#
#color(white)(aaaa)##f(x)##color(white)(aaaaa)##-##color(white)(aaaa)##||##color(white)(aaa)##+##color(white)(aaaa)##-#
Therefore,
#f(x)>=0# when # x in ]2,3]#