How do you evaluate #(\frac { 3} { 2} ) ^ { - 5}#?

1 Answer
Feb 24, 2017

See the entire solution process below:

Explanation:

First, we can use these to rules for exponents to begin the evaluation process:

#a = a^color(red)(1)# and #(x^color(red)(a))^color(blue)(b) = x^(color(red)(a) xx color(blue)(b))#

#(3/2)^5 = (3^color(red)(1)/2^color(red)(1))^color(blue)(-5) = 3^(color(red)(1)xxcolor(blue)(-5))/2^(color(red)(1)xxcolor(blue)(-5)) = 3^-5/2^-5#

Next, we use these rules of exponents to complete the evaluation of the expression:

#x^color(red)(a) = 1/x^color(red)(-a)# and #1/x^color(blue)(a) = x^color(blue)(-a)#

#3^color(red)(-5)/2^color(blue)(-5) = 2^color(blue)(- -5)/3^color(red)(- -5) = 2^color(blue)(5)/3^color(red)(5) = 32/243#