How do you solve #5/13=(k-4)/39#?
1 Answer
Feb 25, 2017
Explanation:
Multiply both sides of the equation by the
#color(blue)"lowest common multiple"# ( LCM) of 13 and 39the LCM of 13 and 39 is 39
#rArrcancel(39)^3xx5/cancel(13)^1=cancel(39)^1xx(k-4)/cancel(39)^1#
#rArr15=k-4larrcolor(red)"no fractions"# add 4 to both sides.
#15+4=kcancel(-4)cancel(+4)#
#rArrk=19#
#color(blue)"As a check"# Substitute this value into the right side and if equal to the left side then it is the solution.
#"right side "=(19-4)/39=15/39=(cancel(15)^5)/cancel(39)^(13)#
#rArrk=19" is the solution"#