How do you evaluate the limit #lim e^t/t# as #t->oo#?
1 Answer
Method 1: L'Hôpital's Rule
The limit:
# lim_(t rarr oo) e^t/t #
is of an indeterminate form
# lim_(x rarr a) f(x)/g(x) = lim_(x rarr a) (f'(x))/(g'(x)) #
And so applying L'Hôpital's rule we get:
# lim_(t rarr oo) e^t/t = lim_(t rarr oo) (d/dt e^t ) / ( d/dt t )#
# " "= lim_(t rarr oo) (e^t ) / ( 1 )#
# " "= oo \ \ \ \# as#e^t# is unbounded.
Method 2: Graphically
graph{(e^x)/x [-26.97, 23.66, -2.97, 22.35]}
Nothing more to say; clearly
Method 3: Taylor Series
# e^t/t = 1/t \ e^t #
# \ \ \ \ = 1/t {1+t+t^2/(2!) + t^3/(3!) + t^4/(4!) + ... }#
# \ \ \ \ = 1/t+1+t/(2!) + t^2/(3!) + t^3/(4!) + ... #
So then:
# lim_(t rarr oo) e^t/t = lim_(t rarr oo) {1/t+1+t/(2!) + t^2/(3!) + t^3/(4!) + ... }#
# " "= lim_(t rarr oo) {1/t+1 +O(t) }#
# " "= lim_(t rarr oo) {1/t+1} + lim_(t rarr oo){O(t) }#
Although the first limit is finite, the second is unbounded.