How do you write and simplify #(6.12433 * 10^6)/(7.15 * 10^-3)# in scientific notation?

1 Answer
Feb 27, 2017

#0.856550 xx 10^3#

Or

#8.56550 xx 10^2#

Explanation:

First, rewrite the expression as:

#(6.12433/7.15)(10^6/10^-3)#

Next, divide the term on the left:

#0.856550 xx (10^6/10^-3)# rounded.

Now, use this rule for exponents to simplify the 10s terms:

#x^color(red)(a)/x^color(blue)(b) = x^(color(red)(a)-color(blue)(b))#

#0.856550 xx 10^color(red)(6)/10^color(blue)(-3) = 0.856550 xx 10^(color(red)(6)+color(blue)(-3)) = 0.856550 xx 10^3#

Or

#8.56550 xx 10^2#