How do you solve #\frac { 2} { 5x } + \frac { 7} { 4x } = - 3#?

1 Answer
Feb 28, 2017

See the entire solution process below:

Explanation:

First, multiply each side of the equation by #color(red)(20x)# to eliminate the fractions while keeping the equation balanced:

#color(red)(20x)(2/(5x) + 7/(4x)) = color(red)(20x) xx -3#

#(color(red)(20x) xx 2/(5x)) + (color(red)(20x) xx 7/(4x)) = -60x#

#(4color(red)(cancel(20)cancel(x)) xx 2/(color(red)(cancel(color(black)(5)))color(red)(cancel(color(black)(x))))) + (5color(red)(cancel(20)cancel(x)) xx 7/(color(red)(cancel(color(black)(4)))color(red)(cancel(color(black)(x))))) = -60x#

#(4 xx 2) + (5 xx 7) = -60x#

#8 + 35 = -60x#

#43 = -60x#

Now, divide each side of the equation by #color(red)(-60)# to solve for #x# while keeping the equation balanced:

#43/color(red)(-60) = (-60x)/color(red)(-60)#

#-43/60 = (color(red)(cancel(color(black)(-60)))x)/cancel(color(red)(-60))#

#-43/60 = x#

#x = -43/60#