How do you find the derivative of #F(x)=int ln(t+1)dt# from #[0, e^(2x)]#?
1 Answer
# F'(x) = 2e^(2x) \ ln(e^(2x)+1) #
Explanation:
If asked to find the derivative of an integral using the fundamental theorem of Calculus, you should not evaluate the integral
The Fundamental Theorem of Calculus tells us that:
# d/dx \ int_a^x \ f(t) \ dt = f(x) #
(ie the derivative of an integral gives us the original function back).
We are asked to find (notice the upper bound as changed from
# F'(x) = d/dx int_0^(e^(2x)) \ ln(t+1) \ dt #
Using the chain rule we can rewrite as:
# F'(x) = (d(e^(2x)))/dx d/(d(e^(2x))) int_0^(e^(2x)) \ ln(t+1) \ dt #
Now,
#d/(d(e^(2x))) int_0^(e^(2x)) \ ln(t+1) \ dt = ln(e^(2x)+1) #
Hence combining these trivial results we get:
# F'(x) = 2e^(2x) \ ln(e^(2x)+1) #