Step 1) Solve the first equation for #x#:
#x + 4y = 4#
#x + 4y - color(red)(4y) = 4 - color(red)4y)#
#x + 0 = 4 - 4y#
#x = 4 - 4y#
Step 2) Substitute #4 - 4y# for #x# in the second equation and solve for #y#:
#x - 2y = -8# becomes:
#(4 - 4y) - 2y = -8#
#4 - 4y - 2y = -8#
#4 - 6y = -8#
#-color(red)(4) + 4 - 6y = -color(red)(4) - 8#
#0 - 6y = -12#
#-6y = -12#
#(-6y)/color(red)(-6) = (-12)/color(red)(-6)#
#(color(red)(cancel(color(black)(-6)))y)/cancel(color(red)(-6)) = 2#
#y = 2#
Step 3) Substitute #2# for #y# at the solution of the first equation at the end of Step 1 and calculate #x#:
#x = 4 - 4y# becomes:
#x = 4 - (4 xx 2)#
#x = 4 - 8#
#x = -4#
The solution is: #x = -4# and #y = 2# or #(-4, 2)#