How do you solve the system of equations #x+ 4y = 4# and #x - 2y = - 8#?

1 Answer
Mar 1, 2017

See the entire solution process below:

Explanation:

Step 1) Solve the first equation for #x#:

#x + 4y = 4#

#x + 4y - color(red)(4y) = 4 - color(red)4y)#

#x + 0 = 4 - 4y#

#x = 4 - 4y#

Step 2) Substitute #4 - 4y# for #x# in the second equation and solve for #y#:

#x - 2y = -8# becomes:

#(4 - 4y) - 2y = -8#

#4 - 4y - 2y = -8#

#4 - 6y = -8#

#-color(red)(4) + 4 - 6y = -color(red)(4) - 8#

#0 - 6y = -12#

#-6y = -12#

#(-6y)/color(red)(-6) = (-12)/color(red)(-6)#

#(color(red)(cancel(color(black)(-6)))y)/cancel(color(red)(-6)) = 2#

#y = 2#

Step 3) Substitute #2# for #y# at the solution of the first equation at the end of Step 1 and calculate #x#:

#x = 4 - 4y# becomes:

#x = 4 - (4 xx 2)#

#x = 4 - 8#

#x = -4#

The solution is: #x = -4# and #y = 2# or #(-4, 2)#