How do you find the radius of convergence #Sigma (n!x^n)/sqrt(n^n)# from #n=[1,oo)#?
1 Answer
The interval of convergence is
Explanation:
#sum_(n=1)^oo(n!(x^n))/sqrt(n^n)=sum_(n=1)^oo(n!(x^n))/n^(n/2)#
The series
#L=lim_(nrarroo)abs(((n+1)!(x^(n+1)))/(n+1)^(1/2(n+1))*n^(n/2)/(n!(x^n)))#
Simplifying:
#L=lim_(nrarroo)abs(((n+1)(n!))/(n!)*x^(n+1)/x^n*n^(n/2)/(n+1)^(n/2+1/2))#
#L=lim_(nrarroo)abs((n+1)/(n+1)^(n/2+1/2)*x*n^(n/2))#
The
Also note that
#L=absxlim_(nrarroo)abs((n+1)^(1/2-n/2)(n^(n/2)))#
#L=absx(lim_(nrarroo)abs((n+1)(n/(n+1))^n))^(1/2)#
Note that
Since the limit approaches infinity, the only time when
Thus the interval of convergence is