How do you solve #|-2n - 1|= 7#?

1 Answer
Mar 3, 2017

See the entire solution process below:

Explanation:

The absolute value function takes any negative or positive terms and converts it to it's positive form. Therefore, you must solve the term within absolute value function for both the negative and positive term it is equated to.

Solution 1)

#-2n - 1 = -7#

#-2n - 1 + color(red)(1) = -7 + color(red)(1)#

#-2n - 0 = -6#

#-2n = -6#

#(-2n)/color(red)(-2) = -6/color(red)(-2)#

#(color(red)(cancel(color(black)(-2)))n)/cancel(color(red)(-2)) = 3#

#n = 3#

Solution 2)

#-2n - 1 = 7#

#-2n - 1 + color(red)(1) = 7 + color(red)(1)#

#-2n - 0 = 8#

#-2n = 8#

#(-2n)/color(red)(-2) = 8/color(red)(-2)#

#(color(red)(cancel(color(black)(-2)))n)/cancel(color(red)(-2)) = -4#

#n = -4#

The solution is #n = -4# and #n = 3#