How do you solve #x^ { 2} - 2x = 44#?
1 Answer
Mar 3, 2017
Explanation:
Complete the square then use the difference of squares identity:
#a^2-b^2 = (a-b)(a+b)#
with
Subtract
#0 = x^2-2x-44#
#color(white)(0) = x^2-2x+1-45#
#color(white)(0) = (x-1)^2-(3sqrt(5))^2#
#color(white)(0) = ((x-1)-3sqrt(5))((x-1)+3sqrt(5))#
#color(white)(0) = (x-1-3sqrt(5))(x-1+3sqrt(5))#
Hence:
#x = 1 +-3sqrt(5)#