First, expand the terms in the right parenthesis by using these two rules for exponents:
#a = a^color(red)(1)# and #(x^color(red)(a))^color(blue)(b) = x^(color(red)(a) xx color(blue)(b))#
#(-11m^4)(-6m^3p^2)^2 = (-11m^4)(-6^color(red)(1)m^color(red)(3)p^color(red)(2))^color(blue)(2)#
#(-11m^4)(-6^(color(red)(1)xxcolor(blue)(2))m^(color(red)(3)xxcolor(blue)(2))p^(color(red)(2)xxcolor(blue)(2))) = (-11m^4)(-6^2m^6p^4) =#
#(-11m^4)(36m^6p^4)#
Next, rewrite the expression as:
#(-11 xx 36)(m^4m^6)p^4 = -396m^4m^6p^4#
Now, use this rule of exponents to complete the problem:
#x^color(red)(a) xx x^color(blue)(b) = x^(color(red)(a) + color(blue)(b))#
#-396m^color(red)(4)m^color(blue)(6)p^4 = -396m^(color(red)(4) + color(blue)(6))p^4 = -396m^10p^4#