How do you find the binomial coefficient of 12C0?
1 Answer
Mar 9, 2017
Explanation:
The definition of
#""^nC""_r# is.
#""^nC""r=(n!)/(r!(n-r)!)#
#rArr""^(12)C""_0=(12!)/(0!xx12!)#
#"Note "0! =1#
#rArr""^(12)C""_0=(cancel(12!)^1)/(1xxcancel(12!)^1)=1#