How do you find the third degree Taylor Polynomial of #f(x)=ln(x^2)# at x=1?
1 Answer
Mar 11, 2017
Explanation:
The Taylor polynomial for
#T(x)=sum_(n=0)^oo(f^((n))(c)(x-c)^n)/(n!)#
Since we want a third degree polynomial, we will extend to the
#f(x)=ln(x^2)=2ln(x)" "=>" "f(1)=2ln(1)=0#
#f'(x)=f^((1))(x)=2/x" "=>" "f^((1))(1)=2#
#f^((2))(x)=-2/x^2" "=>" "f^((2))(1)=-2#
#f^((3))(x)=4/x^3" "=>" "f^((3))(1)=4#
Then:
#ln(x^2)approxf(c)+(f^((1))(1)(x-c))/(1!)+(f^((2))(1)(x-c)^2)/(2!)+(f^((3))(1)(x-c)^3)/(3!)#
#ln(x^2)approx0+(2(x-1))/1+(-2(x-1)^2)/2+(4(x-1)^3)/(3!)#
#ln(x^2)approx2(x-1)-(x-1)^2+2/3(x-1)^3#