How do you simplify #\frac { x y ^ { 0} \cdot ( 3x ^ { 3} y ^ { 3} ) ^ { 0} } { x ^ { 3} y ^ { 3} }#?

1 Answer
Mar 14, 2017

See the entire solution process below:

Explanation:

First, use this rule for exponents to simplify the numerator:

#a^color(red)(0) = 1#

#(xy^color(red)(0) * (3x^3y^3)^color(red)(0))/(x^3y^3) = (x1 * 1)/(x^3y^3) = x/(x^3y^3)#

Next, use these rules for exponents to complete the simplification:

#a = a^color(red)(1)# and #x^color(red)(a)/x^color(blue)(b) = 1/x^(color(blue)(b)-color(red)(a))#

#x/(x^3y^3) = x^color(red)(1)/(x^color(blue)(3)y^3) = 1/(x^(color(blue)(3)-color(red)(1))y^3) = 1/(x^2y^3)#