Let #y=u^2#, where #u=sin(sqrtx)#
Since we have a function within a function, we must use the chain rule to derive #y#, where #(dy)/(dx)=(dy)/(du)*(du)/(dx)#
#d/(du)u^2=2u=2sin(sqrtx)#
To derive #u# in terms of #x#, we need to apply chain rule once more.
Let #u=sin(v)#, #v=sqrtx#
#(du)/(dv)=cos(v)#, #(dv)/(dx)=1/2x^(-1/2)=1/(2sqrtx)#
Hence, #(du)/(dx)=(du)/(dv)*(dv)/(dx)=cos(sqrtx)*1/(2sqrtx)#
#=(cos(sqrtx))/(2sqrtx)#
Now that we know #(du)/(dx)#, we can find #(dy)/(dx)#
#(dy)/(dx)=(dy)/(du)*(du)/(dx)=(cancel(2)sin(sqrtx)cos(sqrtx))/(cancel(2)sqrtx)#
#=(sin(sqrtx)cos(sqrtx))/(sqrtx)#