Solve the differential equation #xyy' +xyy'= y^2 +1#?
1 Answer
Mar 18, 2017
# y = +-sqrt(Bx -1)#
Explanation:
We have:
# xyy' +xyy'= y^2 +1 #
# :. 2xyy' = y^2 +1 #
# :. y/(y^2 +1 )y' = 1/(2x)#
This is a First Order separable DE, so we can separate the variables to get;
# int \ y/(y^2 +1 ) \ dy = int \ 1/(2x) \ dx#
The RHS is trivial and for the LHS we can use a substitution:
Let
Substituting we get
# int \ (1/2)/(u) \ du = int \ 1/(2x) \ dx#
We can now integrate to get:
# 1/2ln|u| = 1/2 ln |x| + A#
# :. ln|u| = ln |x| + 2A#
# :. ln|u| = ln |x| + lnB# (say)
# :. ln|u| = ln B|x| #
# :. u = Bx #
# :. y^2+1 = Bx #
# :. y^2 = Bx -1#
# :. y = +-sqrt(Bx -1)#