How you solve this? #lim_(n->oo)(|__x__|+|__3^2x__|+...+|__(2n-1)^2x__|)/n^3#
2 Answers
Explanation:
This can be understood as the realization of the Riemann-Stieltjes integral of
but
Then
Explanation:
Let us first find a closed formula for:
#s_n = sum_(k=1)^n (2k-1)^2#
The first few terms are:
#color(blue)(1), 10, 35, 84, 165#
Write down the sequence of differences between consecutive terms:
#color(blue)(9), 25, 49, 81#
Write down the sequence of differences of those differences:
#color(blue)(16), 24, 32#
Write down the sequence of differences of those differences:
#color(blue)(8), 8#
Having arrived at a constant sequence (as expected after taking differences three times), we can use the initial term of each of these sequences to write down a formula for
#s_n = color(blue)(1)/(0!)+color(blue)(9)/(1!)(n-1)+color(blue)(16)/(2!)(n-1)(n-2)+color(blue)(8)/(3!)(n-1)(n-2)(n-3)#
#color(white)(s_n) = 1+9n-9+8n^2-24n+16+4/3n^3-8n^2+44/3n-8#
#color(white)(s_n) = 4/3n^3-1/3n#
Note also that:
#abs((floor(x)+floor(3^2x)+...+floor((2n-1)^2x))-(x+3^2x+...+(2n-1)^2x)) < n#
So:
#abs((floor(x)+floor(3^2x)+...+floor((2n-1)^2x))-(x+3^2x+...+(2n-1)^2x)) / n^3 < n/n^3 = 1/n^2 -> 0# as#n->oo#
So:
#lim_(n->oo) (floor(x)+floor(3^2x)+...+floor((2n-1)^2x))/n^3#
#= lim_(n->oo) (x+3^2x+...+(2n-1)^2x)/n^3#
#= lim_(n->oo) ((4/3n^3-1/3n)x)/n^3#
#= lim_(n->oo) ((4/3-1/(3n^2))x)#
#= 4/3x#