How you solve this ?#lim_(n->oo)(5^(n)n!)/(2^(n)n^n)# Calculus Limits Determining Limits Algebraically 1 Answer Cesareo R. Mar 20, 2017 #lim_(n->oo)(5^(n)n!)/(2^(n)n^n)=0# Explanation: Using Stirling assymptotic approximation #n! approx sqrt(2pi n)(n/e)^n# we have #(n!)/n^n approx sqrt(2pi n)e^(-n)# so #lim_(n->oo)(5^(n)n!)/(2^(n)n^n)=(5/2)^n sqrt(2pi n)e^(-n) = (5/(2e))^n sqrt(2pi n) = a^n sqrt(2pi n)# with #a < 1# then #lim_(n->oo)(5^(n)n!)/(2^(n)n^n)=0# Answer link Related questions How do you find the limit #lim_(x->5)(x^2-6x+5)/(x^2-25)# ? How do you find the limit #lim_(x->3^+)|3-x|/(x^2-2x-3)# ? How do you find the limit #lim_(x->4)(x^3-64)/(x^2-8x+16)# ? How do you find the limit #lim_(x->2)(x^2+x-6)/(x-2)# ? How do you find the limit #lim_(x->-4)(x^2+5x+4)/(x^2+3x-4)# ? How do you find the limit #lim_(t->-3)(t^2-9)/(2t^2+7t+3)# ? How do you find the limit #lim_(h->0)((4+h)^2-16)/h# ? How do you find the limit #lim_(h->0)((2+h)^3-8)/h# ? How do you find the limit #lim_(x->9)(9-x)/(3-sqrt(x))# ? How do you find the limit #lim_(h->0)(sqrt(1+h)-1)/h# ? See all questions in Determining Limits Algebraically Impact of this question 1185 views around the world You can reuse this answer Creative Commons License