How do you solve #\frac { w + 5} { w - 6} = \frac { 5} { 4}#?

1 Answer
Mar 27, 2017

See the entire solution process below:

Explanation:

First, mutliply each side of the equation by the lowest common denominator of the fractions, #color(blue)(4)color(red)((w - 6))# to eliminate the fractions while keeping the equation balanced:

#color(blue)(4)color(red)((w - 6)) xx (w + 5)/(w - 6) = color(blue)(4)color(red)((w - 6)) xx 5/4#

#color(blue)(4)cancel(color(red)((w - 6))) xx (w + 5)/color(red)(cancel(color(black)(w - 6))) = cancel(color(blue)(4))color(red)((w - 6)) xx 5/color(blue)(cancel(color(black)(4)))#

#4(w + 5) = 5(w - 6)#

Next, expand the terms within parenthesis by multiplying them by the term outside the parenthesis:

#(4 xx w) + (4 xx 5) = (5 xx w) - (5 xx 6)#

#4w + 20 = 5w - 30#

Then, subtract #color(red)(4w)# and add #color(blue)(30)# to each side of the equation to solve for #w# while keeping the equation balanced:

#4w + 20 - color(red)(4w) + color(blue)(30) = 5w - 30 - color(red)(4w) + color(blue)(30)#

#4w - color(red)(4w) + 20 + color(blue)(30) = 5w - color(red)(4w) - 30 + color(blue)(30)#

#0 + 50 = (5 - color(red)(4))w - 0#

#50 = 1w#

#50 = w#

#w = 50#