Question #10b00

2 Answers

y=e^(x+-sqrt(x^2-k))," is the Gen. Soln."

Explanation:

given ylnydx+(x-lny) dy=0

rArr(dx)/(dy)=(lny-x)/(ylny)
(dx)/(dy)=1/y -x/(ylny)
(dx)/(dy) +(1/(ylny))x=1/y ......(1)

this is a linear differential equation of the form ((dx)/(dy) +P*x=Q) , where P and Q are either constant or a function of 'y'
So integrating factor is e^(intPdy), and here P = (1/(ylny)) , Q =1/y

multiply equation (1) by e^(intPdy), we get
e^(intPdy)(dx)/(dy) +Pxe^(intPdy)=Qe^(intPdy)
rArr d(xe^(intPdy))/(dy)=Qe^(intPdy)
rArrd(xe^(intPdy))=Qe^(intPdy)dy

integrating both sides
intd(xe^(intPdy))=intQe^(intPdy)dy
xe^(intPdy)=intQe^(intPdy)dy

substitute P and Q in the above equation

xe^(int(1/(ylny))dy)=int1/ye^(int(1/(ylny))dy)dy+c. ...(2)

to solve the integrating factor, put lny=trArr (1/y)dy=dt
rArr e^(int(1/(ylny))dy)=e^(int(1/tdt) = e^lnt = t = lny

so from (2)

xlny=int1/ylny dy+c.

to solve R.H.S, using same substitution, you get int1/ylnydy=((lny)^2)/2
rArr xlny=((lny)^2)/2+c.
rArr2xlny=(lny)^2+k, k=2c.
rArr (lny)^2-2xlny+k=0

rArr lny={2x+-sqrt(4x^2-4k)}/2...[because," the quadr. forml.]"

:. lny=x+-sqrt(x^2-k).

:. y=e^(x+-sqrt(x^2-k))," is the Gen. Soln."

for particular solution, assuming constant c = 0,we get
y=e^(x+-sqrt(x^2-0)) rArry=e^(2x) rArr2x=lny"

Mar 28, 2017

y = e^(xpm sqrt(x^2+C_1))

Explanation:

y log y dx+(x-log y)dy =0

or

(dy)/(dx)=-(y log y)/(x-log y) now making the transformation

z=x-log y we have

(dz)/(dx)=1-1/y(dy)/(dx) or

(dy)/(dx)=y(1-(dz)/(dx))

but

y = e^(x-z) so putting all together

e^(x-z)(1-(dz)/(dx))=-e^(x-z)((x-z)/z)

considering that e^(x-z) ne 0

1-(dz)/(dx)= -((x-z)/z)=1-x/z or

(dz)/(dx)=x/z

Now this differential equation is separable so

z dz=x dx with solution

z^2=x^2+C_1

or

(x-log y)^2=x^2+C_1 then

x-log y = pm sqrt(x^2+C_1) and finally

y = e^(xpm sqrt(x^2+C_1))