How do you simplify #\frac { 100a ^ { 2} b ^ { 4} } { 5a b ^ { 2} }#?

1 Answer
Mar 30, 2017

See the entire solution process below:

Explanation:

First, rewrite the expression as:

#(100/5)(a^2/a)(b^4/b^2) -> 20(a^2/a)(b^4/b^2)#

Now, use these two rules of exponents to simplify the #a# and #b# terms:

#a = a^color(blue)(1)# and #x^color(red)(a)/x^color(blue)(b) = x^(color(red)(a)-color(blue)(b))#

#20(a^2/a)(b^4/b^2) -> 20(a^color(red)(2)/a^color(blue)(1))(b^color(red)(4)/b^color(blue)(2)) -> 20a^(color(red)(2)-color(blue)(1))b^(color(red)(4)-color(blue)(2)) ->#

#20a^1b^2#

We can use the opposite of this rule: #a = a^color(blue)(1)# or #a^color(blue)(1) = a#, to complete the simplification:

#20a^color(blue)(1)b^2 = #20ab^2##