How do you multiply #(x-4)(x^2-5x+3)#?

2 Answers
Mar 31, 2017

See the entire solution process below:

Explanation:

To multiply these two terms you multiply each individual term in the left parenthesis by each individual term in the right parenthesis.

#(color(red)(x) - color(red)(4))(color(blue)(x^2) - color(blue)(5x) + color(blue)(3))# becomes:

#(color(red)(x) xx color(blue)(x^2)) - (color(red)(x) xx color(blue)(5x)) + (color(red)(x) xx color(blue)(3)) - (color(red)(4) xx color(blue)(x^2)) + (color(red)(4) xx color(blue)(5x)) - (color(red)(4) xx color(blue)(3))#

#x^3 - 5x^2 + 3x - 4x^2 + 20x - 12#

We can now group like terms:

#x^3 - 5x^2 - 4x^2 + 3x + 20x - 12#

We can now combine like terms:

#x^3 + (-5 - 4)x^2 + (3 + 20)x - 12#

#x^3 + (-9)x^2 + 23x - 12#

#x^3 - 9x^2 + 23x - 12#

Mar 31, 2017

#color(blue)(x^3-9x^2+23x-12#

Explanation:

#color(white)(aaaaaaaaaaaaa)##x^2-5x+3#
#color(white)(aaaaaaaaaaaaa)##x-4#
#color(white)(aaaaaaaaaaaaa)##-----#
#color(white)(aaaaaaaaaaaaa)##x^3-5x^2+3x#
#color(white)(aaaaaaaaaaaaaaaa)##-4x^2+20x-12#
#color(white)(aaaaaaaaaaaaa)##----------#
#color(white)(aaaaaaaaaaaaaa)##color(blue)(x^3-9x^2+23x-12#