Rewording the question, we are asked to find an equation for #1+costheta+cos2theta+...+cosntheta#
To solve this you need De Moirve's theorem: #(cistheta)^n=cisntheta=cosntheta+isinntheta#
Notice that the sum #1+cistheta+cis2theta+...+cisntheta# is the same as #1+cistheta+(cistheta)^2+...+(cistheta)^n#; a geometric series.
Seeing that the first term is #1#, the ratio #cistheta# and the number of terms is #n+1#, we can represent this neatly:
#1+cistheta+(cistheta)^2+...+(cistheta)^n=1((cistheta)^(n+1)-1)/(cistheta-1)#
#1+cistheta+(cistheta)^2+...+(cistheta)^n=((cis(n+1)theta)-1)/(cistheta-1)#
I am going to use a trick when simplifying #cistheta-1# here:
#cisntheta-1=c#
#=1-2sin^2(ntheta/2)+i2sin(ntheta/2)cos(ntheta/2)-1#
#=-2sin(ntheta/2)(sin(ntheta/2)+icos(ntheta/2))#
#=-2sin(ntheta/2)(cos(90-ntheta/2)+isin(90-ntheta/2))#
#=-2sin(ntheta/2)cis(90-ntheta/2)#
Notice that the left hand side can be expanded to:
#1+costheta+isintheta+cos2theta+isin2theta+...+cosntheta+isinntheta#, and that the real part of this is what we want. Thus, we need to find the real component of #((cis(n+1)theta)-1)/(cistheta-1)#
#((cis(n+1)theta)-1)/(cistheta-1)#
#(-2sin((n+1)theta/2)cis(90-(n+1)theta/2))/(-2sin(theta/2)cis(90-theta/2))#
#(sin((n+1)theta/2)cis(90-(n+1)theta/2-(90-theta/2)))/(sin(theta/2))#
#(sin((n+1)theta/2)cis(-ntheta/2))/(sin(theta/2))#
Getting the real part, we see get
#(sin((n+1)theta/2)cos(-ntheta/2))/(sin(theta/2))#
#(sin((n+1)theta/2)cos(ntheta/2))/(sin(theta/2))#
and we're done