How do you simplify #\frac { 10x ^ { 2} y } { 6x ^ { 5} y ^ { 6} }#?

1 Answer
Apr 2, 2017

See the entire simplification process below:

Explanation:

First, rewrite the expression as:

#10/6 * x^2/x^5 * y/y^6 = (2 xx 5)/(2 xx 3) * x^2/x^5 * y/y^6 = #

#(color(red)(cancel(color(black)(2))) xx 5)/(color(red)(cancel(color(black)(2))) xx 3) * x^2/x^5 * y/y^6 = 5/3 * x^2/x^5 * y/y^6#

Now, use these two rules of exponents to complete the simplification:

#a = a^color(red)(1)# and #x^color(red)(a)/x^color(blue)(b) = 1/x^(color(blue)(b)-color(red)(a))#

#5/3 * x^color(red)(2)/x^color(blue)(5) * y^color(red)(1)/y^color(blue)(6) = 5/3 * 1/x^(color(blue)(5)-color(red)(2)) * 1/y^(color(blue)(6)-color(red)(1)) = 5/3 * 1/x^3 * 1/y^5 = #

#5/(3x^3y^5)#