How do you multiply and simplify #\frac { 6} { 4n + 10} \cdot \frac { 8n + 20} { 6}#?

1 Answer
Apr 3, 2017

See the entire solution process below:

Explanation:

First, cancel the common term in the numerator and denominator of each fraction:

#6/(4n + 10) * (8n + 20)/6 -> color(red)(cancel(color(black)(6)))/(4n + 10) * (8n + 20)/color(red)(cancel(color(black)(6))) ->#

#1/(4n + 10) * (8n + 20)/1 -> (8n + 20)/(4n + 10)#

Next, factor a #color(red)(4)# out of the numerator and a #color(blue)(2)# out of the denominator:

#((color(red)(4) xx 2n) + (color(red)(4) xx 5))/((color(blue)(2) xx 2n) + (color(blue)(2) xx 5)) = (color(red)(4)(2n + 5))/(color(blue)(2)(2n + 5))#

Again, cancel out the common terms in the numerator and denominator:

#(4color(red)cancel(color(black)((2n + 5))))/(2color(red)cancel(color(black)((2n + 5)))) -> 4/2 -> 2#

However, we need to remember #4n + 10 != 0# or #n != 2.5#