Hoe to solve this?We have #hat3 inZZ_7#;Calculate #hat3^6#and#hat3^2014#
1 Answer
Apr 6, 2017
Explanation:
Writing
#hat(3)^0 = hat(1)#
#hat(3)^1 = hat(3)#
#hat(3)^2 = hat(3*3) = hat(9) = hat(2)#
#hat(3)^3 = hat(3*2) = hat(6)#
#hat(3)^4 = hat(3*6) = hat(18) = hat(4)#
#hat(3)^5 = hat(3*4) = hat(12) = hat(5)#
#hat(3)^6 = hat(3*5) = hat(15) = hat(1)#
We could have deduced
If
#p# is a prime number, then for any integer#a# :
#a^p -= a" "# modulo#p#
If in addition
#a^(p-1) -= 1" "# modulo#p#
From
#hat(3)^(6m+n) = hat(3)^n#
So:
#hat(3)^2014 = hat(3)^(6*335+4) = hat(3)^4 = hat(4)#