What is #int \ ln(x+sqrt(x^2+1)) \ dx# ?

3 Answers
Apr 10, 2017

#int color(white)(.)ln(x+sqrt(x^2+1)) color(white)(.)dx = x sinh^(-1) x - sqrt(x^2+1) + C#

#color(white)(int ln(x+sqrt(x^2+1)) dx) = x ln(x+sqrt(x^2+1)) - sqrt(x^2+1) + C#

Explanation:

Let us try a hyperbolic substitution.

Let #x = sinh theta#

Then:

#int color(white)(.)ln(x+sqrt(x^2+1)) color(white)(.)dx = int color(white)(.)ln(sinh theta + sqrt(sinh^2 theta + 1)) dx/(d theta) d theta#

#color(white)(int color(white)(.)ln(x+sqrt(x^2+1)) color(white)(.)dx) = int color(white)(.)ln(sinh theta + cosh theta) cosh theta color(white)(.)d theta#

#color(white)(int color(white)(.)ln(x+sqrt(x^2+1)) color(white)(.)dx) = int color(white)(.)ln(e^theta) cosh theta color(white)(.)d theta#

#color(white)(int color(white)(.)ln(x+sqrt(x^2+1)) color(white)(.)dx) = int color(white)(.)theta cosh theta color(white)(.)d theta#

#color(white)(int color(white)(.)ln(x+sqrt(x^2+1)) color(white)(.)dx) = theta sinh theta - cosh theta + C#

#color(white)(int color(white)(.)ln(x+sqrt(x^2+1)) color(white)(.)dx) = x sinh^(-1) x - sqrt(x^2+1) + C#

If we would prefer not to have an inverse hyperbolic function in the answer, let's find another expression for it:

Let:

#y = sinh^(-1) x#

Then:

#x = sinh y = 1/2(e^y-e^(-y))#

Hence:

#e^y-2x-e^(-y) = 0#

So:

#(e^y)^2-(2x)(e^y)-1 = 0#

So using the quadratic formula:

#e^y = (2x+-sqrt((2x)^2+4))/2#

#color(white)(e^y) = x+-sqrt(x^2+1)#

If #y# is real then #e^y > 0# and we need the #+# sign here.

So:

#e^y = x+sqrt(x^2+1)#

and:

#y = ln(x+sqrt(x^2+1))#

That is:

#sinh^(-1) x = ln(x+sqrt(x^2+1))#

So:

#int color(white)(.)ln(x+sqrt(x^2+1)) color(white)(.)dx = x ln(x+sqrt(x^2+1)) - sqrt(x^2+1) + C#

Apr 11, 2017

Note that

#d/dxln(x+sqrt(x^2+1))=1/(x+sqrt(x^2+1))(1+x/sqrt(x^2+1))#

#color(white)(d/dxln(x+sqrt(x^2+1)))=1/sqrt(x^2+1)#

Then we should try integration by parts:

#intln(x+sqrt(x^2+1))dx#

Letting:

#{(u=ln(x+sqrt(x^2+1)),=>,du=1/sqrt(x^2+1)dx),(dv=dx,=>,v=x):}#

So the integral equals:

#=xln(x+sqrt(x^2+1))-intx/sqrt(x^2+1)dx#

#=xln(x+sqrt(x^2+1))-sqrt(x^2+1)+C#

After using #x=tanu# and #dx=(secu)^2*du# transform,

#intLn(x+sqrt(x^2+1))dx# integral became,

#=intLn(secu+tanu)*(secu)^2*du#

#=tanu*Ln(secu+tanu)-inttanu*[(secu)^2+secu*tanu]/(secu+tanu)*du#

#=tanu*Ln(secu+tanu)-inttanu*secu*(secu+tanu)/(secu+tanu)*du#

#=tanu*Ln(secu+tanu)-intsecu*tanu*du#

#=tanu*Ln(secu+tanu)-secu+C#

#=tanu*Ln(secu+tanu)-sqrt((tanu)^2+1)+C#

#=x*Ln(x+sqrt(x^2+1))-sqrt(x^2+1)+C#

Explanation:

1) I used #x=tanu# and #dx=(secu)^2*du# transform.

2) I solved transformed integral with integration by parts method.

3) I used inverse transform.