How do you find the integral #int x^2/((x-1)^2(x+1)) dx# ?

1 Answer
Apr 10, 2017

#int x^2/((x-1)^2(x+1)) dx = 3/4 ln abs(x-1)-1/(2(x-1))+1/4 ln abs(x+1) + C#

Explanation:

#x^2/((x-1)^2(x+1)) = A/(x-1)+B/(x-1)^2+C/(x+1)#

#color(white)(x^2/((x-1)^2(x+1))) = (A(x-1)(x+1)+B(x+1)+C(x-1)^2)/((x-1)^2(x+1))#

#color(white)(x^2/((x-1)^2(x+1))) = (A(x^2-1)+B(x+1)+C(x^2-2x+1))/((x-1)^2(x+1))#

#color(white)(x^2/((x-1)^2(x+1))) = ((A+C)x^2+(B-2C)x+(-A+B+C))/((x-1)^2(x+1))#

Equating coefficients:

#{ (A+C=1), (B-2C=0), (-A+B+C=0) :}#

Adding all three equations, we find:

#2B=1#

So:

#B=1/2#

Then from the second equation, we find:

#C=1/4#

Then from the first equation we find:

#A=3/4#

So:

#int x^2/((x-1)^2(x+1)) dx = int (3/4*1/(x-1)+1/2*1/(x-1)^2+1/4*1/(x+1)) dx#

#color(white)(int x^2/((x-1)^2(x+1)) dx) = 3/4 ln abs(x-1)-1/(2(x-1))+1/4 ln abs(x+1) + C#