We know that
#cosh(z)=1/2(e^z+e^-z)# and
#cos(z)=1/(2i)(e^(iz)+e^(-iz))#
so
#cosh(z)cos(z)=1/(4i)(e^((1+i)z)+e^((1-i)z))+1/(4i)(e^((-1+i)z)+e^((-1-i)z))#
but
#1+i= sqrt(2)e^(iphi)# with #phi=arctan1=pi/4#
and
#-1+i=sqrt(2)e^(i(pi-phi))#
so
#1/(4i)(e^((1+i)z)+e^((1-i)z))=1/(4i)sum_(k=0)^oo(sqrt 2 z)^k/(k!)(e^(i kphi)+e^(-i kphi))=#
#=1/2sum_(k=0)^oo(sqrt 2 z)^k/(k!)cos(k pi/4)#
analogously we have
#1/(4i)(e^((-1+i)z)+e^((-1-i)z))=1/2sum_(k=0)^oo(sqrt 2 z)^k/(k!)cos(k(3pi/4))#
and finally
#cosh(z)cos(z)=1/2sum_(k=0)^oo(sqrt 2 z)^k/(k!)(cos(k pi/4)+cos(k((3pi)/4)))#
NOTE:
Using the identity
#cos(a+b)+cos(a-b)=2cos(a)cos(b)#
with #a = k(pi/2)# and #b=-k pi/4# we have also
#cosh(z)cos(z)=sum_(k=0)^oo(sqrt 2 z)^k/(k!)cos(k pi/2)cos(k(pi/4))#