How to find the Taylor series for the function #1/(1+z+z^(2))# about the point z=0 ?
2 Answers
Explanation:
Here
Now with
but
so
and also
so
or
now
so finally
Explanation:
Note that:
#1-z^3 = (1-z)(1+z+z^2)#
#1/(1-t) = sum_(n=0)^oo t^n" "# for#abs(t) < 1#
So we find:
#1/(1+z+z^2) = (1-z)/(1-z^3)#
#color(white)(1/(1+z+z^2)) = (1-z) sum_(n=0)^oo z^(3n)#
#color(white)(1/(1+z+z^2)) = sum_(n=0)^oo (1-z)z^(3n)#
#color(white)(1/(1+z+z^2)) = sum_(n=0)^oo (z^(3n) - z^(3n+1))#
#color(white)(1/(1+z+z^2)) = 1-z+z^3-z^4+z^6-z^7+z^9-z^10+...#
when