Can someone help me solve for x? (Exponential Equation)
#50/(1 +e^-x) = 4#
2 Answers
Explanation:
Given:
#50/(1+e^(-x)) = 4#
Multiply both sides by
#50 = 4+4e^(-x)#
Subtract
#46 = e^(-x)#
Take natural logs of both sides to get:
#ln 46 = -x#
Multiply both sides by
#-ln 46 = x#
That is:
#x = -ln 46#
(which is the same as
Explanation:
#color(blue)"cross-multiply"# the equation.
#rArr4(1+e^-x)=50#
#"divide both sides by 4"#
#(cancel(4)(1+e^-x))/cancel(4)=50/4#
#rArr1+e^-x=12.5#
#"subtract 1 from both sides"#
#cancel(1)cancel(-1)+e^-x=12.5-1#
#rArre^-x=11.5#
#"using "color(blue)"law of logarithms"#
#color(red)(bar(ul(|color(white)(2/2)color(black)(logx^nhArrnlogx)color(white)(2/2)|)))#
#"take ln (natural log ) of both sides"#
#lne^-x=ln11.5#
#rArr-xcancel(lne)^1=ln11.5#
#rArrx=-ln11.5#
#rArrx~~-2.44" to 2 dec. places"#