In an equilateral #DeltaOAB,# we know that,
#OA=AB=OB rArr OA^2=AB^2=OB^2....(ast)#
With #O(0,0), A(3,4), and B(x,y),# using the Distance Formula,
#(ast) rArr 3^2+4^2=(x-3)^2+(y-4)^2=x^2+y^2, i.e., #
#25=x^2+y^2-6x-8y+25=x^2+y^2.#
# OA^2=OB^2 rArr x^2+y^2=25...(1).#
8y#AB^2=OB^2 rArr 6x+8y=25, or, y=(25-6x)/8.........(2).#
#(2), and, (1) rArr x^2+(25-6x)^2/64=25.#
#:. 64x^2+(625-300x+36x^2)=1600#
#:. 100x^2-300x=975,# completing square, we get,
# 100x^2-300x+15^2=975+15^2=1200.#
#:. (10x-15)^2=(20sqrt3)^2#
#:. 10x-15=+-20sqrt3, or, 10x=15+-20sqrt3#
#:. x=3/2+-2sqrt3#
#x=3/2+2sqrt3, and (2) rArr y=1/8{25-6(3/2+2sqrt3)}=1/8(25-9-12sqrt3)=1/8(16-12sqrt3)=2-3/2sqrt3.#
Similarly, #x=3/2-2sqrt3 rArr y=2+3/2sqrt3.#
Therefore, #(x,y)=(3/2+2sqrt3,2-3/2sqrt3), or, #
#(x,y)=(3/2-2sqrt3,2+3/2sqrt3).#
Enjoy Maths.!