What are the values and types of the critical points, if any, of #f(x)=x^3 + 3x^2 + 1#?

1 Answer
Apr 16, 2017

We have a local maximum at #(-2,5)#
We have a local minimum at #(0,1)#
The inflexion point is #(-1,3)#

Explanation:

We calculate the first derivative

#f(x)=x^3+3x^2+1#

#f'(x)=3x^2+6x#

The critical points are when, #f'(x)=0#

#3x^2+6x=0#

Factorising yields

#3x(x+2)=0#

Therefore,

#x=0 or x=-2#

We build a chart

#color(white)(aaaa)##x##color(white)(aaaa)##-oo##color(white)(aaaa)##-2##color(white)(aaaa)##0##color(white)(aaaa)##+oo#

#color(white)(aaaa)##x+2##color(white)(aaaaa)##-##color(white)(aaaa)##+##color(white)(aaaa)##+#

#color(white)(aaaa)##x##color(white)(aaaaaaaaa)##-##color(white)(aaaa)##-##color(white)(aaaa)##+#

#color(white)(aaaa)##f'(x)##color(white)(aaaaaa)##+##color(white)(aaaa)##-##color(white)(aaaa)##+#

#color(white)(aaaa)##f(x)##color(white)(aaaaaaa)##↗##color(white)(aaaa)##↘##color(white)(aaaa)##↗#

Now, we calculate the second derivative

#f''(x)=6x+6#

The inflexion point is when #f''(x)=0#

#6x+6=0#

#x=-1#

The inflexion point is #(-1,3)#

We calculate

#f''(-2)=6*-2+6=-6#

As #f''(-2)<0#, we have a local maximum at #(-2,5)#

#f''(0)=6#

As #f''(0)>0#, we have a local minimum at #(0,1)#

We build another chart to determine the convexity and concavity

#color(white)(aaaa)##Interval##color(white)(aaaa)##(-oo,-1)##color(white)(aaaa)##(-1,+oo)#

#color(white)(aaaa)##f''(x)##color(white)(aaaaaaaaaaa)##-##color(white)(aaaaaaaaaaa)##+#

#color(white)(aaaa)##f(x)##color(white)(aaaaaaaaaaaaa)##nn##color(white)(aaaaaaaaaaa)##uu#

graph{x^3+3x^2+1 [-14.66, 13.82, -5.92, 8.32]}